2,413 research outputs found

    An optical VLA on the Moon

    Get PDF
    Optical observations on the Earth must cope with the refractive disturbances of the atmosphere, perturbations by the day-to-night thermal cycle, vibrations induced by the wind, and the bending of the telescope by gravity. These all conspire to limit telescope performance. In particular, in trying to improve angular resolution, there seems to be a practical limit of the order of a few tenths of an arc-second for the realizable angular resolution of single-aperture telescopes, largely imposed by the atmosphere, although other structural limitations would appear as limits at one-tenth of an arc-second or so

    Astronomical interferometry on the Moon

    Get PDF
    Optical interferometric arrays are particularly attractive candidates for a manned lunar base. A permanent lunar can provide support for a variety of astronomical investigations. An optical interferometric array, perhaps of the general form of the VLA but designed for optical instead of radio wavelengths, would lead to a qualitative advance in the understanding of the universe. A wide variety of scientific problems could be addressed by such an instrument. The stellar analogs of the solar cycle, the behavior of sunspots on other stars, the magnetic field configurations of other stars, and the behavior of dynamic plasma phenomena such as flares and winds are examples of star related problems that ultimately would lead to both increased understanding of our Sun and fundamental knowledge of the manner in which stars form and evolve

    Appendix: Limits on the use of heterodyning and amplification in optical interferometry

    Get PDF
    The development of optical fibers, lasers, and mixers at optical frequencies has offered the hope that active methods can contribute to optical interferometry. Heterodyning, in particular, looks attractive, even though bandwidths are narrower than one would like at present; one might expect this limitation to lessen as technology develops. That expectation, unfortunately, is not likely to benefit interferometry at optical wavelengths because of the intervention of quantum mechanics and the second law of thermodynamics, as Burke (1985a) pointed out. So much 'second quantization' noise is generated that only at infrared frequencies, somewhere in the 10-100 micron range, can one look forward to heterodyning in any realistic sense. The reason is easily understood. Every amplifier, in the quantum limit, works by stimulated emission, even though this basic truth is not obvious at radio frequencies. This means that there must be spontaneous emission occurring within every amplifier, and Strandberg (1957) showed that this implied a limiting noise temperature, T sub N = h nu/k, for any amplifier. Burke (1969) used this result to demonstrate that, if it were not for this quantum noise, the VLBI method would allow one to tell which slit a photon went through before forming an interference pattern, thus violating basic tenants of quantum mechanics. In essence, the second quantization condition Delta N Delta phi greater than or = 1 saves one from paradox. One can state the conclusion simply: any amplifier produces approximately one photon per Hertz of bandwidth. In optical interferometry, one will certainly want bandwidth in the 10(exp 12) to 10(exp 14) Hz range, and that implies an intolerable cacophony of noise photons. Only at infrared frequencies can one tolerate the quantum noise, where the natural noise background may be high and the mixers are not as efficient as one would hope for. The crossover at present is about 10 or 20 microns, but the boundary will shift to longer wavelengths as noise performance improves. One might guess that ultimately a wavelength of about 100 microns will mark the limit of useful amplification and heterodyning in astronomical aperture synthesis interferometry

    Microwave and Millimeter Wave Techniques

    Get PDF
    Contains report on one research project.National Aeronautics and Space Administration (Contract NAG3-215

    Microwave Spectroscopy

    Get PDF
    Contains reports on three research projects

    Records of Melanistic American Red Squirrels (Tamiasciurus hudsonicus) from Nova Scotia

    Get PDF
    Though melanism has been observed in several species of North American sciurids, the occurrence of this phenotype is relatively rare in American Red Squirrels (Tamiasciurus hudsonicus). We provide the first detailed accounts of melanistic Red Squirrels observed in Nova Scotia, Canada

    Radio Astronomy

    Get PDF
    Contains reports on two research projects.National Aeronautics and Space Administration (Grant NsG-419)National Aeronautics and Space Administration (Contract NSR-22-009-120)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force, under Contract DA 28-043-AMC-02536(E)U. S. Navy (Office of Naval Research) under Contract N00014-67-A-0204-0009National Science Foundation (Grant GP-7046

    The PHASES Differential Astrometry Data Archive. I. Measurements and Description

    Get PDF
    The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 sub-arcsecond binary systems to determine precision binary orbits, study the geometries of triple and quadruple star systems, and discover previously unknown faint astrometric companions as small as giant planets. PHASES measurements made with the Palomar Testbed Interferometer (PTI) from 2002 until PTI ceased normal operations in late 2008 are presented. Infrared differential photometry of several PHASES targets were measured with Keck Adaptive Optics and are presented.Comment: 33 pages emulateapj, Accepted to A
    corecore